
L'histoire du gaz de réseau : une transition historique

1

L'histoire du gaz de réseau : une transition historique

L'industrie du gaz a déjà participé à une grande transition énergétique qui s'est traduite par un changement de ressource primaire, de vecteur et d'usage

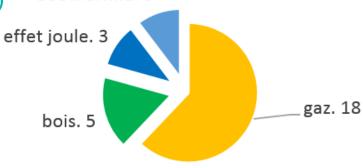
Quelle énergie dans les **logements collectifs** passifs ? Le gaz naturel : allié de la construction passive

France

Energie des programmes passifs en France

29 bâtiments de logements collectifs en France (>10 log)

Logements collectifs


Géothermie. 3

- **62% en gaz naturel** (17% bois, 10% PAC, 10% effet joule)
- 42% avec de l'eau chaude solaire

Loire Atlantique

5 programmes collectifs

- 4 en gaz naturel (80%)

Source : <u>www.bddmaisonpassive.fr</u> logements collectifs > 10 log

→ La Fleuriaye, une référence qui confirme la règle

Pourquoi le gaz naturel en Passif? La performance globale

Quitte à produire du biométhane,

pourquoi le gâcher dans des équipements à bas rendement ?

Quitte à produire un bâtiment très performant,

pourquoi le gâcher avec des équipements à bas rendement ?

- → La Fleuriaye, une référence qui confirme la règle
 - → Un pas vers le bâtiment positif ?

Eau chaude sanitaire : ~20 kwh/m²/an Traitement de l'eau chaude sanitaire en Passif

Optimisation sur la production d'ECS

Réduire le besoin

Mousseurs, réducteurs de débits, ...

Réduire les pertes

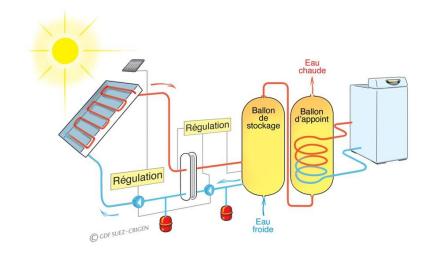
- Optimisation du réseau de distribution (isolation supérieure, réduire les longueurs de distribution)
- Trouver l'optimum entre la puissance installée et le volume de stockage

Améliorer les rendements

- Générateurs en cascade, voire séparés (La surpuissance ECS n'impacte pas le rendement chauffage)
- Solaire thermique ~ 50% du besoin ECS couvert

Eau chaude sanitaire : ~20 kwh/m²/an Traitement de l'eau chaude sanitaire en Passif

Beaucoup de solutions gaz adaptées sont déjà disponibles sur le marché


Chaudière condensation

Solaire thermique

Cogénération

PAC absorption gaz
Aéro ou géothermique

Adaptés à la **condensation** en mode ECS

50% du besoin ECS

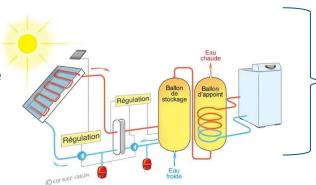
Produire de l'ECS avec les pertes de la prod électrique 140%

Rendement nominal **165%**

Chauffage: 15 kwh/m²/an Les solutions gaz naturel les plus retenues en passif

62 % des programmes passifs

Chaufferie collective + double flux collective + double vitrage performant


Mini-chaufferie décentralisée (gain sur les pertes de distribution)

1 abonnement pour la copro : 230€/an, puis 4c€/kWh 1 maintenance (~300 ; 600 €)

40% des programmes gaz

Chaufferie gaz + ECS solaire

Très bonne isolation = conso chauffage faible ECS Solaire = conso ECS faible

Chauffage : 15 kwh/m²/an Les solutions gaz naturel en déploiement

Chaudière individuelle

Chaudière individuelle micro modulante

1 programme réalisé

Modulation de 800 W à 28 kW

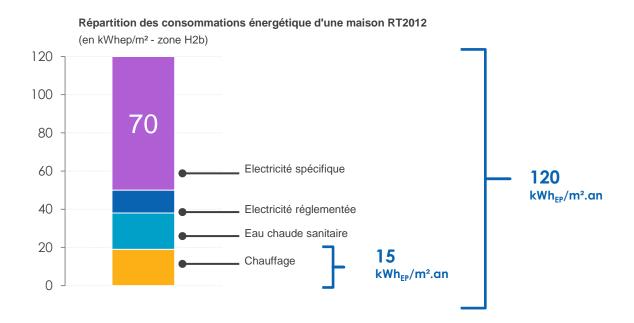
PAC Absorption Gaz Pompe à Chaleur Absorption gaz

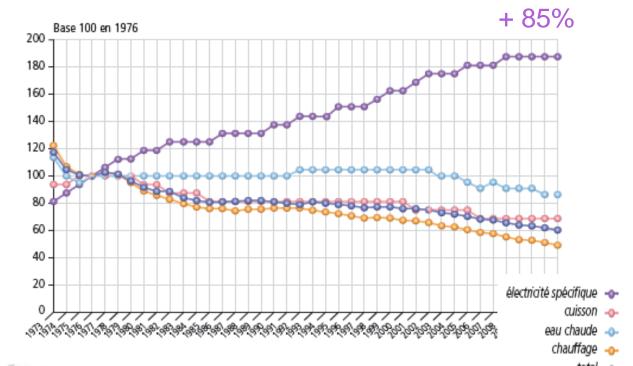
Aéro ou géothermie Rendement nominal 165%

Très bon bâti + très bon système Gain de rendement de 30 à 40%

Microcogénération Cogénération

Production simultanée de chaleur et électricité Rendement 140%




Couvrir les besoins électriques 24h/24h en complément du PV

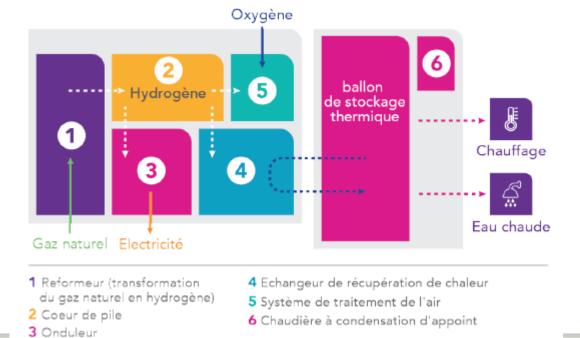
GRDF Vers une convergence de la production de chaleur et d'électricité?


Forte évolution de la répartition des usages énergétiques

GRDF Vers une convergence de la production de chaleur et d'électricité?

- Mise en œuvre de photovoltaïque → électricité ENR
 - Energie renouvelable
 - Pas/peu de maintenance
 - Intermittence
 - Surfaces disponibles
- Mise en œuvre de cogénération -> complémentarité, équilibrage des productions
 - Non renouvelable (sauf si biométhane)
 - Production constante sur la période de chauffe
 - Surface 40 kW thermique / 22 kW élec ~ 250 à 350 m² de PV
 - Gain de rendement 250% / réseau elec.

Pile à combustible Gaz naturel


Demain : la technologie de cogénération la plus performante

60%

Rendement élec maximal d'une pile à combustible, meilleur qu'une centrale électrique, la récupération des pertes en plus !

Merci de votre attention

Place aux questions

Florent Chomel

Ingénieur Thermicien Responsable cellule efficacité énergétique Ouest

